Designation of Bearings

- The bearing are designated in the following two systems.
- Whole Circle Bearing System (W.C.B)
- Quadrantal Bearing System (Q.B.)

Whole Circle Bearing System (W.C.B)

- The bearing of a line measured with respect to magnetic meridian in clockwise direction is called magnetic bearing and its value varies between 0 of to 360 of.
- The Quadrants start from North and Progress in a clockwise direction as the first quadrant is 0 0 to 90 0 in clockwise direction, 2nd 90 0 to 180 0, 3 nd 180 0 to 270 0, and up to 360 0 is 4th one.

Whole Circle Bearing System (W.C.B)

Reduced Bearing (RB)

The Following Table Should be Remembered for Conversion of WCB to RB

Case	WCB between	R.B.	QUADRANT
1	0º TO90º	WCB	N-E
2	90° TO -180°	180-WCB	S-E
3	180º TO -270º	WCB-180°	S-W
4	270° TO 360°	360-WCB	N-W

The Following Table Should be Remembered for Conversion of RB to WCB

Case	R.B in	Rule of W.C.B.	W.C.B
	quadrant		between
1	N-E	WCB=R.B	0º TO90º
2	S-E	WCB =180-R.B	90º TO -180º
3	S-W	WCB =R.B+180	180° TO -270°
4	N-W	WCB =360-R.B	270° TO 360°

- · Convert the following WCB into Reduced Bearing.
- · 49 0
- 240⁰
- 133 ⁰
 335 ⁰

49 0

- Since the line falls in the first quadrant therefore the nearer pole is the north pole and is measured from North towards E as 49 0
- There fore $RB = N 49^{\circ} E$

240°

- Since the line falls in the third quadrant therefore the nearer pole is the north pole and is measured from North towards S as ⁰
- RB = WCB- 180⁰
- RB = 240° 180° = 60°
- RB= S 60 ° W

133 0

- Since the line falls in the second quadrant therefore the nearer pole is the south pole and is measured from South towards E as ⁰
- RB = 180° Θ
- RB = $180^{\circ} 133^{\circ} = 47^{\circ}$
- RB= S 47 ° E

3350

- Since the line falls in the third quadrant therefore the nearer pole is the north pole and is measured from North towards W as ⁰
- $RB = 360^{\circ} WCB$
- RB = $360^{\circ} 335^{\circ}$
- RB= N 25 ° W

Convert the following WCB into RB

- 190 °
 260 °
 315 °

Soln

190 °

- RB= WCB 180⁰
- RB = 190 °- 180 °
- $RB = S 10^{\circ} W$

260°

- RB = WCB-180⁰
- RB= $260^{\circ} 180^{\circ}$
- $RB = S 80^{\circ} W$

Soln

3150

- $RB = 360^{\circ} WCB$
- RB = $360^{\circ} 315^{\circ}$
- $RB = N45^{\circ} W$

- Convert the following reduced bearings into whole circle bearings:
- N 65° E
- S 43° 15′ E
- S 52° 30′ W
- N 32° 42′ W

Let ' θ ' be whole circle bearing.

(i) Since it is in NE quadrant,

$$\theta = \alpha = 65^{\circ}$$
 Ans.

(ii) Since it is in South East quadrant

$$43^{\circ} 15' = 180^{\circ} - \theta$$

or
$$\theta = 180^{\circ} - 43^{\circ} 15' = 136^{\circ} 45'$$
 Ans.

(iii) Since it is in SW quadrant

$$52^{\circ} 30' = \theta - 180^{\circ}$$

or
$$\theta = 180^{\circ} + 52^{\circ} 30' = 232^{\circ} 30'$$

(iv) Since it is in NW quadrant,

$$32^{\circ}42' = 360^{\circ} - \theta$$

or
$$\theta = 360^{\circ} - 32^{\circ} 42' = 327^{\circ} 18'$$

- The following fore bearings were observed for lines, AB, BC, CD, DE, EF and FG respectively.
 Determine their back bearings:
- 148
- 65
- 285
- · 215°
- N 36 W
- · S 40 E

Solution:

- The difference between fore bearing and the back bearing of a line must be 180°. Noting that in WCB angle is from 0° to 360°,
- we find Back Bearing = Fore Bearing ± 180°
- + 180 is used if θ is less than 180 and
- -180° is used when θ is more than 180°

Hence,

- $BB \ of AB = 145^{\circ} + 180^{\circ} = 325^{\circ}$
- $BB \ of BC = 65^{\circ} + 180^{\circ} = 245^{\circ}$
- $BB \ of \ CD = 285^{\circ} 180^{\circ} = 105^{\circ}$
- $BB ext{ of } DE = 215^{\circ} 180^{\circ} = 35^{\circ}$
- In case of RB, back bearing of a line can be obtained by interchanging N and S at the same time E and W. Thus
- $BB ext{ of } EF = S ext{ 36}^{\circ} E$
- $BB ext{ of } FG = N ext{ 40}^{\circ} ext{ W}.$

The Fore Bearing of the following lines are given Find the Back Bearing.

- (a) FB of AB= $310^{\circ} 30'$
- (b) FB of BC= 145 0 15'
- (c) FB of CD = $210^{0} 30$ '
- (d) FB of DE = $60^{\circ}45^{\circ}$

Solution

- (a) BB of AB = $310^{\circ} 30' 180^{\circ} 0' = 130^{\circ} 30'$
- (b) BB of BC = $145^{\circ}15' + 180^{\circ}0' = 325^{\circ}15'$
- (c) BB of CD = $210^{\circ}30' 180^{\circ}0' = 30^{\circ}30'$
- (d) BB of DE = $60^{\circ} 45' + 180^{\circ} 0' = 240^{\circ} 45'$

FB of the following lines are given, find the BBs.

- (a) FB of AB = $S 30^{\circ} 30^{\circ} E$
- (b) FB of BC = $N 40^{\circ} 30^{\circ} W$
- (c) FB of CD= $S 60^{\circ} 15^{\circ} W$
- (d) FB of DE = $N 45^{\circ}30^{\circ}E$

Solution

- (a) BB of AB = $N 30^{\circ} 30^{\circ} W$
- (b) BB of BC = $S 40^{\circ} 30^{\circ} E$
- (c) BB of CD = $N 60^{\circ} 15^{\circ} E$
- (d) BB of DE = $S 45^{\circ} 30^{\circ} W$